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BOOSTER/ORBITER PROPULSION _*'--'_

RECORD OF IMPORTANT CUSTOMER COMMUNICATIONS _

CONTACT: Mr. Dav!d Taylor. P&WCONTACT:, Mr. Tom Ma_'es

AFFILIATION: NASA/HSFC EXTENSION: 407-796-3515
m i

PHONE NUMBER: 205-544-0597 DATE: 8/4/89 TIME: 9:_.__30am

SUBJECT: Advanced Development Program (/IOP) - Cost Hodel Requirements

SUMMARY OF IMPORTANT INFORMATION:

Ref: Letter from Dave Taylor to Tom IMyes,
Subject s4une •s above, d•tod July 19, 1989

Pratt and Whitney has reviewed the preliminary list of requirements for the
cost model inputs, outputs and ground rules. We have the follou_ng comments
and questions •bout the model requirements.

1. Shouldn't the costs be presented in constant 1987 dol|ari •ether _J_mn
taunt ;g89 doll•? _rm 13_m=_u_,Lt_g&oomm_,mlmCtftes _Imt_tL_

• e l_eported in 1987 dolla_ 4_ as far as4_e know _I$ _ s'clll
wmxlm.

2. Recommendthat • ground rule be tncluded regardtng_acceptance test
_sts are to be handled for the com_nents. Since m productton z_oonent .
4_ould normally be tested as part of an engine acceptance test we sug_e_St that

• acceptance test costs not be included at the component level.

3. The mdel outputs included in this docutnt are quite limited. Are these
outputs intended to be the ones available in the ADP component cost models
provided to the other engine contractors? If so, does NASA want more cost
visibility from the model than this list indicates)
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FOREWORD

This summary report is submitted to NASA-Marshall Space Flight Center, Huntsville, Alabama by

Pratt. & Whitney/Government Engines & Space Propulsion. The report contains a summary of material

characterization testing, completed on fine-grain cast Pratt & Whitney 1490 (lnconel 718), for turbine structural

housing applications in the NLS oxidizer turbopump. The test effort was initiated in November 1990 and

completed in August 1992.
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SECTION 1.0
INTRODUCTION

Pratt & Whitney (P&W), under the National Launch System (NLS) Advanced Development Oxidizer

Turbopump Program (NAS8-37595), has been conducting ongoing fabrication demonstrations and material
evaluation tasks to support the selection of baseline materials for various oxidizer turbopump (OTP) components.

This task complements the trade studies and OTP preliminary design efforts being conducted under Phase B of

the Space Transportation Engine Program (NAS8-38170). The objective of these combined studies is to select
the lowest-cost alloy and fabrication process for OTP components, while providing adequate structural integrity.

At the inception of this program, material evaluation efforts began for the turbine structural housings. The

OTP uses two large turbine housings that serve as inlet and exit volutes for the gas generator working fluid.
Considerable benefits in cost and lead time could be attained through the use of cast housings, although a suitable

cast alloy would be required to meet the structural demands of the turbine operating environment.

Material screemng and characterization of fine-grain cast PWA 1490 (Inconel 718) and other potential cast

alloys were initiated to determine which cast material (if any) could meet the structural requirements of the

turbine. Based on the material property data generated and input from casting suppliers, fine-grain cast PWA

1490 was selected as the optimum alloy for the turbine structural housings. Full characterization of this alloy

was continued to obtain the data required for design. This report contains the results of all material testing

completed on PWA 1490 during this advanced development program.

,,_., 1-1



Pratt & Whitney FR-22375

1.1 PWA 1490 BACKGROUND

The PWA 1490 used in the characterization program was machined from structural housings that were cast

using the Microcast-X (MX) process. The MX process, developed by the Howmet Corporation, is a proprietary.

fine-grain casting process that has been successfully used to cast many large structural components with a grain

size ranging between ASTM 1.5 and 5. The process produces a cellular-like microstructure rather than the

dendritic structure normally observed in cast alloys. These grains closely resemble the grains in a forging.

A fine-grain, cellular-like microstructure provides improved mechanical property uniformity, increased fatigue

properties and ductility, and better weldabiUty. These benefits are derived at the expense of high-temperature

stress rupture properties, however, stress rupture is less important for this application.

Since the OTP housings will be exposed to a hydrogen environment, material resistance to hydrogen

embrittlement must be determined. Therefore, PWA 1490 and the other potential alloys were tested in 1000 psi

hydrogen for comparison with standard air tests. Extensive mechanical property testing detailed in the body of

this report shows that PWA 1490 has excellent resistance to hydrogen embrittlement at pressures under 1000 psi.

The testing also demonstrated that PWA 1490 outperformed the other potential alloys.

,,_., 1-2
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SECTION 2.0
PWA 1490 MATERIAL CHARACTERIZATION RESULTS

2.1 SUMMARY MATRIX

A summary of the characterization testing performed on PWA 1490 is provided in Table 2-1. This material

property testing was initiated in November 1990 and completed in August 1992.

Table 2-1. PWA 1490 Characterization Matrix Completed

Temperature No. Tests No. Tests

Test Type Co (o F) Gas Environment Required Completed

Smooth Tensile RT Air 10 8 (2")

RT Hydrogen - 1000 psi 13 14

537.8 (1000) Air 3 8

537.8 (1000) Hydrogen - 1000 psi 6 10

Notch Tensile RT Air 10 7 (3*)

RT Hydrogen - 1000 psi 10 10

537.8 (1000) Air 3 7

537.8 (1000) Hydrogen - 1000 psi 3 9

Smooth LCF RT Air 6 6

RT Hydrogen - 1000 psi 6 7

537.8 (1000) Air 4 4

537.8 (1000) Hydrogen - 1000 psi 6 6

Double Notch LCF RT Air 9 5 (4*)

RT Hydrogen - 1000 psi 5 5

537.8 (1000) Air 5 6

537.8 (1000) Hydrogen - 1000 psi 5 5

Smooth HCF RT Air 9 6 (3*)

RT Hydrogen - I000 psi 6 6

537.8 (I000) Air 5 5

537.8 (1000) Hydrogen - 1000 psi 5 8

Crack Propagation RT Air 2 (2*)

RT Hydrogen - 1000 psi 2 2

Fracture Toughness RT Hydrogen - 1000 psi 1 1

Total: 134 159

* Indicates Tests Completed Under Different Contract

2.2 SMOOTH TENSILE TESTS

Strength and ductility of PWA 1490 was characterized in air and 1000 psig hydrogen at both room temperature

and 537.8"C (10130"1). Baseline air tensile testing was performed in a standard air environment at atmospheric

pressure. Hydrogen tensile testing was performed in a 1000 psig environment with less than lppm oxygen.

Additional tests were completed in 5000 psig to compare the hydrogen degradation of PWA 1490 tensile

properties to other cast Inconel 718 test data. Also, attempts were made to maximize the hydrogen degradation

of PWA 1490 by exposing specimens to a 6 hour hydrogen bath prior to test. The results of required tests

and the additional tests are given in Table 2-2 and Table 2-3. Table 2-2 features all room temperature tests

completed on PWA 1490, while Table 2-3 shows the results of all 537.8"C (1000"1) testing. All material used

during this characterization program was machined from cast structural housings of comparable size and shape

to the STME LOX turbopump turbine housings. This ensures that all resulting data is representative of actual

,,_., 2-1
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material properties within a PWA 1490 structural housing. Cast bars or plates were not used because they yield

an unrealistic optimum metallurgical state and higher than average material properties.

Table 2-2. Smooth Tensile Properties of PWA 1490 in Air and Gaseous Hydrogen at Room Temperature

Strength Ductility

Specimen Pressure Temperature 0.2% Ir_ld Ultimate EL RA

Identity Environment (psig) C o (OF) (KSI) (KSi) (%) (%)

2899-1 Air 0 23.9 (75) 149.1 170.7 11.5 17.5

-2 Air 0 23.9 (75) 146.4 175.0 19.2 28.8

-3 Air 0 23.9 (75) 149.6 169.1 8.8 17.2

2900-7 GH2 1000 23.9 (75) 153.3 176.3 16.0 24.8

-8 GH2 1000 23.9 (75) 151.2 173.3 ! 6.9 27.6

-9 GH2 1000 23.9 (75) 150.6 173.9 15.5 21.5

3028-1" GH2 1000 23.9 (75) 154.6 165.5 3.5 10.9

-2" GH2 I000 23.9 (75) 153.2 164.2 4.8 11.4

3253-6 GH2 5000 23.9 (75) 155.1 176.8 13.5 25.8

-7 GH2 5000 23.9 (75) 151.5 175.8 13.3 22.6

-8 GH2 5000 23.9 (75) 148.6 168.9 10.9 20.8

3404-1 Air 0 23.9 (75) 147.6 168.5 14.1 26.5

-2 Air 0 23.9 (75) 146.3 168.5 15.2 25.0

-3 Air 0 23.9 (75) 148.0 170.9 16.7 23.7

-4 GH2 1000 23.9 (75) 148.6 171.4 14.9 26.1

-5 GI;I2 1000 23.9 (75) 147.4 170.1 18.1 30.2

-6 GH2 11200 23.9 (75) 148.8 172.6 18.5 28.3

-7 GH2 5000 23.9 (75) 145.5 167.2 14.3 22.2

-8 GH2 5000 23.9 (75) 144.8 165.2 14.7 23.3

-9 GH2 5000 23.9 (75) 143.0 163.1 14.7 27.2

364.4-1 Air 0 23.9 (75) 146.9 166.4 11.7 18.5

-2 Air 0 23.9 (75) 145.5 166.9 15.3 23.3

3645-3 GH2 1000 23.9 (75) 150.6 166.6 6.1 8.9

-4 GH2 1000 23.9 (75) 147.0 168.3 14.0 22.6

3849-1 GH2 1000 23.9 (75) 149.9 174.7 19.5 29.0

-2 GH2 11200 23.9 (75) 147.6 160.2 5.5 18.3

-3 GH2 1000 23.9 (75) 148.8 171.2 17.6 27.8

-4 GH2 1000 23.9 (75) 133.8 152.1 9.2 19.3

*6 Hour Exposure to i000 psig Gaseotm Hydrogen at 1000°F Prior to Test
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Table 2-3. Smooth Tensile Properties of PWA 1490 in Air and Gaseous Hydrogen at 53Z80C (100001=')

Strength Ductility

Specimen Pressure 0.2% Ir=eld Ultimate EL RA

Identity Environment (psig) Temperature C o (0 F) (ksi) (ksi) (%) (%)

2899-4 Air 0 537.8 (1000) 122.0 135.7 6.8 23.1

-5 Air 0 537.8 (1000) 121.8 140.3 16.0 31.4

-6 Air 0 537.8 (1000) 121.8 140.0 18.8 33.1

2900-10 GH2 1000 537.8 (I000) 122.9 139.9 11.2 21.9

-11 GH 2 10(30 537.8 (1000) 119.7 136.5 14.5 24.0

-12 GH2 1000 537.8 (1000) 120.8 137.9 16.1 28.7

3028-3" GH 2 1000 537.8 (1000) 128.1 142.5 10.5 23.0

-.4" GH 2 1000 537.8 (10(30) 124.8 140.8 10.5 22.2

3253-9 GH 2 5000 537.8 (1000) 119.6 137.4 15.5 26.2

-10 GH 2 5000 537.8 (1000) 123.7 141.9 12.8 22.2

-11 GH2 5000 537.8 (1000) 122.6 139.7 12.1 20.4

3404. -10 Air 0 537.8 (1000) 120.6 138.1 15.5 33.1

-I 1 Air 0 537.8 (1000) 122.1 139.9 14.9 29.8

-12 Air 0 537.8 (1000) 120.9 137.2 13.3 30.9

-13 GH 2 1000 537.8 (1000) 120.8 136.1 14.3 31.3

-14 GH 2 1000 537.8 (1000) 117.8 135.2 16.5 32.1

-15 GH 2 1000 537.8 (1000) 120.0 136.3 14.1 32.7

-16 GH 2 5000 537.8 (1000) 117.9 132.8 15.6 25.8

-17 GH2 5000 537.8 (1000) 113.3 127,7 12.7 21.6

-18 GH 2 5000 537.8 (1000) 119.8 133.8 12.7 25.3

3644-6 Air 0 537.8 (1000) 124.1 140.7 16.5 30.5

-7"* Air 0 537.8 (1000) 94.5 118.1 27.3 38.6

3645-8 GH2 1000 537.8 (1000) 122.4 137.5 14.8 28.4

-9 GH 2 I000 537.8 (I000) 119.7 134.1 13.1 25.5

*6 Hour Exposure to 1000 psig Gaseous Hydrogen at 1000°F Prior to Test

**Temperature Reached 1500°F Before Stabilizing at IO00°F Data Not Included in Mean

._. 2-3
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2.3 NOTCH TENSILE TESTS

Notch tensile tests were performed on PWA 1490 to determine the notch strength of the alloy in both air and

1000 psig hydrogen. Baseline air testing was completed in a standard air environment at atmospheric pressure.

Hydrogen tensile testing as performed in a 1000 psig environment with less than 1 ppm oxygen. Added tests, not

driven by design requirements, were completed in 5000 psig to determine the maximum degradation possible in a

hydrogen environment. Hydrogen degradation of PWA 1490 properties was also tested by exposing specimens to

a 6 hour hydrogen bath prior to test. The results of all the notch tensile tests are given in Table 2--4 and 2-5. All

room temperature lists are shown in Table 2.-4. The results of all 537.8"C (1000*F) tests are given in Table 2-5.

Table 2-.4. Notched Tensile Properties of PWA 1490 in Air and Gaseous Hydrogen at Room Temperature

Stress

Specimen Pressure Temperature Concentration

Identity Environment (psig) C ° (a F) (Kt)

Notch

Strength

eta)

2852-13 Air 0 23.9 (75) 3.1 237.5

-14 Air 0 23.9 (75) 3.1 242.2

-15 Air 0 23.9 (75) 3.1 238.3

2851-16 GH2 11300 23.9 (75) 3.0 243.8

-17 GH2 1000 23.9 (75) 3.0 246.1

- 18 GH2 1000 23.9 (75) 3.0 243.3

3050-5* GH2 1000 23.9 (75) 3.0 224.4

3253-1 GH2 5000 23.9 (75) 3.1 232.1

-2 GH2 5000 23.9 (75) 2.9 238.0

-3 GH2 5000 23.9 (75) 2.9 227.2

3992-I Air 0 23.9 (75) 3.1 240.9

-2 Air 0 23.9 (75) 3.1 244..5

-3 GH2 1000 23.9 (75) 2.9 235.8

-4 GH2 11300 23.9 (75) 3.1 238.1

-5 GH2 5000 23.9 (75) 3.1 235.5

-6 GH2 5000 23.9 (75) 3.1 229.5

3584-A6 GH2 1000 23.9 (75) 7.6 252.1
-B3 GH2 11300 23.9 (75) 7.6 248.5

-4= GH2 11300 23.9 (75) 9.2 287.3

3585-A5 Air 0 23.9 (75) 9.2 240.I

-B Air 0 23.9 (75) 9.2 248.7

*6 Hour Exposure to 1000 psig Gaseous Hydrogen at 1000*F Prior to Test
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Table 2-5. Notched Tensile Properties of PWA 1490 in Air and Gaseous Hydrogen at 53Z80C (IO00*F)

Stress

Specimen Pressure Temperature Concentration

Identity Environment (psig) Co (o F) (Kt)

• Notch

Strength
¢ksO

2852-19 Air 0 537.8 (1000) 3.1 199.0

-20 Air 0 537.8 (I 000) 3.1 196.0

-21 Air 0 537.8 (1000) 3.1 197.8

2851-22 GH2 1000 537.8 (1000) 3.0 193.5

-23 GH2 1000 537,8 (1000) 3.0 194.3

-24 GH2 1000 537.8 (1000) 3.0 192.2

3050-6* GH2 I000 537.8 (I000) 3.0 191.7

3253-4 GH2 5000 537.8 (1000) 2.9 195.0

-5 GH2 5000 537.8 (1000) 2.9 195.4

3992-7 Air 0 537.8 (1000) 3,1 197.9

-8 Air 0 537.8 (1000) 3.1 198.3

-9 GH2 I000 537.8 (1000) 3.1 196.4

- 10 GH2 1000 537.8 (1000) 3.1 190.3

-I 1 GH2 5000 537.8 (1000) 3.1 186.6

3584-F1 GH2 1000 537.8 (1000) 7.6 190.4

-D5 GH2 1000 537.8 (1000) 7.6 199.0

431 GH2 1000 537.8 (1000) 9.2 204.6

3585-D Air 0 537.8 (1000) 9.2 203.0

431 Air 0 537.8 (1000) 9.2 204.0

1000 psi$ Gaseous Hydrogen at IO00*F Prior to Test*6 Hour Exposure to

._., 2--5
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2.4 SMOOTH LOW-CYCLE FATIGUE

2.4.1 SMOOTH LCF TESTING AT ROOM TEMPERATURE

Low-cycle fatigue (LCF) testing of PWA 1490 at 26.7°C (80°I) was performed in servo-hydraulic test
machines, with strain feedback control. Hydrogen testing was performed in a 1000 psig environment with less

than 1 ppm oxygen. The tests were run at a strain ratio (R_) of -1.0 at a cyclic frequency of I0 cpm.

Results of the requested LCF tests are presented in Table 2-6 and in Figure 2-1. Mean curves were

established using maximum likelihood techniques. Lower bound curves for tlds data (99 percent) were estimated
in accordance to standard statistical methods.

Figure 2-I compares the results of the room temperature LCF tests in hydrogen to baseline air data. The

room temperature 1003 psi hydrogen: resulted in a 2x debit in smooth LCF life.

Table 2-6. Strain Control Fatigue Testing of PWA 1490 (Microcast Inco

718) LCF Specimens (FAT 1000), R_ = -1.0, Frequency = 10 cpm

lnelaai¢

Sample Total Srain Strain Max Stress Mean Modulus Temp Cyclesto

Number Range (%) Range (%) (kJi) Stress (ksi) (MSi) Environment* C ° (o F) Failure

B3 0.94 0.08 119.0 -2.9 29.8 GH2 26.7 (80) 2,419

B4 0.75 < 0.01 107.0 0.0 29.4 GH2 26.7 (80) +3,870 **

B5 0.75 < 0.01 109.6 1.5 29.3 GH2 26.7 (80) 5,270

B7 0.75 < 0.01 104.5 -2.9 29.5 GH2 26.7 (80) 4,205 ***

B6 0.56 < 0.0l 78.7 -1.4 28.6 GH2 26.7 (80) 31,092

B8 0.56 < 0.01 80.3 1.4 28.6 GH2 26.7 (80) 43,000

B7 0.38 < 0.01 56.5 2.8 28.9 GH2 26.7 (80) +101,400"*

* GH2 - 1000 psig Hydrogen Environment Containing Less Than l ppm 02
** Test Terminated Prior to Specimen Failure, treated as a Censored Data Point in the Regression Analysis

*** Run Previously at a Lower Strain Range
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2.4.2 SMOOTH LCF TESTING AT 537.8°C (1000°F)

Low-cycle fatigue (LCF) testing of PWA 1490 at 26.7°C (80°F) was performed, in servo-hydraulic test
machines, with strain feedback control using strain control (Kt = 1.(30) LCF specimens. Baseline air testing

was performed in a standard air environment at atmospheric pressure. Hydrogen testing was performed in a

1000 psig environment with less than 1 ppm oxygen. The tests were run at a strain ratio (R_) of -1.0 at cyclic

frequency of 10 to 30 cpm.

Results of the requested LCF tests are presented in Table 2-7 and in Figure 2-2. Mean curves, for the air

and hydrogen data, were established using maximum likelihood techniques. Lower bound curves for this data

(99.9 percent) were estimated in accordance to standard statistical methods.

Two specimens failed at inclusions in the gage. These specimens are identified in Table 2-7. SEM and

microprobe analysis were performed on ample number 16 to determine the composition of the inclusion. The
determination was that the inclusion was alumina.

Figure 2-2 compares the results of the 537.8"C (1000*F) LCF tests in hydrogen to baseline air data. The

537.8"C (1000*F), 100_si hydrogen caused no debit in smooth LCF life.

Table 2-7. Strain Control Fatigue Testing of PWA 1490 (Microcast lnco 718) LCF

Specimens (FAT 27300, FAT I0000), R_ = -1.0, Frequency = 10 to 30 cpm

Total

InMaxtic Stress

Sample TotalStain Strain Range Mean Modulus Environment Temp Cyclesto

Number Range (%) Range (%) (ksi) SWes$ (ksi) (MSi) * Ca (o F) Failure

13 1.2 0.39 189.6 -2.1 23.7 Air 537.8 (1000) 1,801

14 0.8 0.13 169.2 -0.5 24.2 Air 537.8 (1000) 4,800

18 0.5 <9.01 122.0 -3.0 24.0 Air 537.8 (1000) +268,000

16 0.5 <t).01 119.1 2.0 24.1 Air 537.8 (1000) 23,262 **

22 1.13 0.24 205.4 -3.5 24.3 GH2 537.8 (10130) 1,823

20 1.13 0.20 209.9 -3.6 24.7 GH2 537.8 (1000) 1,815

23 0.75 0.06 173.8 0.0 24.6 GH2 537.8 (1000) 9,404

19 0.75 0.04 177.4 -1.4 25.3 GH2 537.8 (1000) 9,612

18 **** 0.80 169.2 -0.5 GH2 537.8 (1000) 3,908 ***

21 0.47 <9.01 116.9 2.2 25.3 GH2 537.8 (I000) 95,594

*Air - Standard Air Environment, Atmospheric Pressure

GH2 - I000 psi 8 Hydrogen Environment Containing Less Than 1 ppm 02

**Test Terminated Prior to Specimen Failure, Treated as a Failure in the Regression Analysis

***Failure Originated at an Inclusion

****Smooth LCF Specimen (FAT 27300, With no Collars) Run in Hydrogen Under Load Control
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2.5 DOUBLE NOTCH LCF

2.5.1 DOUBLE NOTCH LCF AT ROOM TEMPERATURE

Low-cycle fatigue (LCF) testing of PWA 1490 at 26.7 *C (80 °F) was performed in servo-hydraulic test

machines, with load feedback control, using double notched (Kt = 2.18) LCF specimens. Baseline air testing

was performed in a standard air environment at atmospheric pressure and given in graphical form only.

The data is presented in Table 2-8 and in Figure 2-3. Specimens were tested at room temperature in 1000

psig hydrogen. The tests were run to failure at a stress ratio (Ro) of and 0.05 (all tensile stress cycle) at a cyclic

frequency of 10 cpm. Figure 2-3 shows a comparison between the hydrogen and air data.

Mean curves were established using maximum likelihood techniques. The 99.9 percent lower bound curves
for this data were estimated in accordance to standard statistical methods.

Table 2--8. LCF Testing of PWA 1490 in 1000 psig Hydrogen

Double Notch LCF Specimen (FAT 15002), Frequency 30 cpm

Max

Sample Temperature Total Stain Stress Cycles

Number En_nment* C ° (o F) Range (%) (IcsO FaiiLu'¢ Crack Origia

D3 GH 2 26.7 (80) 2.18 120 5,109 Notch Surface

D GH 2 26.7 (80) 2.18 100 9,539 Notcb Surface

D2 GH2 26.7 (80) 2.18 80 21,941 Notch Surface

F GH 2 26.7 (80) 2.18 60 60,475 Notch Surface

F I GH 2 26.7 (80) 2.18 50 83,866 Notch Surface
i

*GH2 - 1000 prig Hydrogen Environment Containing Less Than 1 ppm 02
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2.5.2 DOUBLE NOTCH LCF AT 1000 ° F

Low-cycle fatigue testing of PWA 1490 at 537.8°C (1000*F) was performed in servo-hydraulic test machines,

with load feedback control, using double notched (Kt = 2.18) LCF specimens. 'Baseline air testing was performed

in a standard air environment at atmospheric pressure. Hydrogen testing was performed in a 1000 psig environment

with less than 1 ppm oxygen. The tests were run at a stress ratio (Ro.) of 0.05 at a cyclic frequency of 10 to 30 cpm.

Results of the LCF tests are presented in Table 2-9 and in Figure 2--4. Mean curves, for the air and hydrogen

data, were established using maximum likelihood technique. Lower bound curves for this data (99.9 percent)

were estimated in accordance to standard statistically methods.

Table 2-9. LCF Fatigue Testing of PWA 1490 (Microcast INCO 718) Double

Notch LCF Specimens (FAT I5002), Ru -- 0.05, Frequency - 10 to 30 CPM

Max

Sample Temperature Stress Stress Cycles to 1/32

Number Environment* C O (OF) Concentration (ksi) In. Crack

Cycles to
Failure

4 GH 2 537.8 ('1000) 2.18 140.0 __ 2,602

3 GH 2 537.8 (1000) 2.18 100.0 __ 9,212

2 GH2 537.8 (1000) 2.18 100.0 __ 10,336

I GH2 537.8 (1000) 2.18 80.0 _ 20,973

5 GH 2 537.8 (1000) 2.18 60.0 _ +144,760 **

5 Air 537.8 (1000) 2.18 140.0 750 1,864

1 Air 537.8 (1000) 2.18 100.0 4,000 8,007

2 Air 537.8 (1000) 2.18 100.0 4,000 9,101

3 Air 537.8 (1000) 2.18 80.0 25,000 30,584

4 Air 537.8 (1000) 2.18 80.0 9,000 22, 236

6 Air 537.8 (1000) 2.18 60.0 _ 79,487

*Air- Standard Air Environment, Atmospheric Pressure

GH2 - I000 psi8 Hydrogen Environment Containing Less Than I ppm 02

**Test Ten'minated Prior to Specimen Failure, Treated as a Censored Data Point
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2.6 SMOOTH HIGH-CYCLE FATIGUE

Smooth high-cycle fatigue (HCF) specimens (Kt = 1) were machined from SSME-ATD fuel inlet housing

S/N 063.0. Specimens were tested in 1000 psig hydrogen at room temperature and 537.8°C (I000" F). The test

were run axially at a stress ratio (R_r) of -1.0 (fully reversed stress cycle) and a cyclic frequency of 30 Hz to

failure or runout at 107 cycles. Results of the requested HCF tests are presented in Table 2-10, and in Figure 2-5.

Mean curves were established using maximum likelihood techniques. Lower bound curves (-99.9 percent)
for this data were estimated in accordance to standard statistical methods. Both the mean and lower bound

curves were extrapolated out to 108 cycles.

Figures 2--6 and 2-7 compare the resulting data from HCF tests in hydrogen to baseline air data. The t000
psi hydrogen caused no significant debit in HCF life at 537.8°C (1000*F) or at room temperature.

Table 2-10. HCF Testing of PWA 1490 HCF Specimen (FML 100721), R_ = -1.0, FR EQ = Hz

Sample Temperature Stress Air Stress (ksi Cycles to

Number Environment* Co (o F) Concentration Peak) Failure Comments

C06 GH2 26.7 (80) 1.00 78.6 162,615

C08 GH2 26.7 (80) 1.00 78.6 102,200 Uploaded from 39 ksi

CO'/ GH2 26.7 (80) 1.00 58.6 286,000

B 17 GH2 26.7 (80) 1.00 58.6 202,125

B16 GH2 26.7 (80) 1.00 48,6 10,000,000 Did not fail **

C08 GH2 26.7 (80) 1.00 38,6 10.000,0_0 Did not fail ***

BI5 GH2 537.8 (1000) 1.(30 70,0 59,035 Uploaded from 40 ksi

C12 GH2 537.8 (1000) 1.00 60,0 153,095 Uploaded from 30 ksi

C09 GH2 537.8 (1000) 1.00 60.0 105,979

C13 GH2 537.8 (1000) 1.00 50.0 735,500 Uploaded from 40 ksi

B14 GH2 537.8 (1000) 1.00 50.0 162,875

B15 GH2 537.8 (10(30) 1.00 40.0 15,550,000 Did not fail ****

C13 GH2 537.8 (1000) 1.00 40.0 11,160,0(10 Did not fail ****

C12 GH2 537.8 (1000) 1.00 30.0 14,730,000 Did not fail ****

*GH 2 - 1000 psig Hydrogen Environment Containing Less Thaa 1 ppm O_

**Treated as a Failure Point in the Regression

***Not Included in the Regression

****Treated as a Censored Data Point in the Regression
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2.7 CRACK PROPAGATION

Two crack growth (da/dn) tests were performed on PWA 1490 material in 1000 psi Hydrogen at room

temperature. The analysis and reduction of the crack growth test data was not complete at the time this report

was published. This data will be made available at a later date.

2.8 FRACTURE TOUGHNESS

One compact specimen fracture toughness test was performed on PWA 1490 material from a SSME-ATD

fuel pump inlet housing. This specimen was tested in 1000 psi Hydrogen at room temperature. Plane strain
conditions were not met due to the thickness of the specimen. The high toughness of PWA 1490 requires a

thickness greater than the standard compact fracture toughness specimen. In place of stress intensity factor (Ktc)

a strength ratio of 1.295 was calculated. The strength ratio is the total stress (P/A = MC/I) at maximum load

divided by the yield strength.

.,_., 2-18
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SECTION 3.0
SUMMARY

"Fine grain Inconel 718 (PWA 1490), exhibited outstanding mechanical properties at room temperature and

537.8°C (1000*F) in hydrogen up to a pressure of 1000 psig. PWA 1490 had no significant degradation in tensile,

high-cycle fatigue, or fracture toughness properties when exposed to 1000 psig hydrogen. Smooth and notch

low-cycle fatigue at 537.8°C (1000*F) and 1000 psi hydrogen exhibited no hydrogen embrittlement degradation,

but did show a debit at room temperature and 1000 psig hydrogen. However, this debit does not preclude the

use of PWA 1490. The debited PWA 1490 has a 1000 cycle life at the 99.9 percent lower bound for a 0.7

percent strain range or 100 ksi stress. This level of LCF capability would be sufficient for a turbine housing

application at the relatively low-pressure of 1000 psig.
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Abstract:

A pressurized water flow rig was designed and built to test scaled test samples of the STME
thrust balance comer seals. The purpose of the comer seal test program shifted from its original intent. It
was planned to test various features of the seal at several radial and axial positions, that were believed to
improve its restrictiveness. These results were used to anchor an analytical comer seal flow and pressure
drop model. The focus was expanded to include optimizing the design of comer seals and characterizing
their performance for use in the analytical comer seal prediction model.

The optimization method chosen was the Taguchi test method and evaluation of results. The
large number of design parameters used in comer seals necessitated two Taguchi test matrices. The t-u'st
was a scope reduction to determine which parameters had the most effect on comer seal restrictiveness.

The second Taguchi test matrix optimized the resulting parameters of the scope reduction tests. Finally
the optimized sample was characterized and the analytical model anchored. The optimized sample was
not characterized as extensively as had been hoped due to the suspension of the NLS/STME program.

Results of the optimized sample gave a seal design almost twice as restrictive as the analytical
predictions prior to this test program. An additional benefit was realized for the optimized sample. It
displayed an increasing seal restrictiveness with increasing axial overlap. This effect was not believed to

occur prior to this test program

I. Description of Comer seals in rocket turbomachinery

During the explosion to full power and cut-off at shutdown, rocket turbomachinery experience
extremely large variations in fluid pressure in the cavities enclosing the rotating components. In order to
keep the shaft movement, due to these pressure variations, within the limits of the turbopump design, a
shaft axial load balancing system is added to the turbopump design. The easiest and most efficient

system developed, uses a shrouded pump impeller's front and back face as the mechanism to control shaft
movement. This "thrust balance system" is designed to accommodate any unforeseen imbalances during
off-design, transient start-up or shut-down operation,.

The key component that makes the "thrust balance system" function is a set of comer seals,

located at the outer and inner diameter of the pump impeller's back-face (see Figure I-l). These seals
change their restrictiveness and flow area as the shaft moves. By changing their flow restriction, the
seals allow lower or higher pressure to develop in the on the pump impeller's back face. This results in a
restoring force that counter act the shaft travel. A comer seal design has several goals to achieve. These
goals are to maximize load capability of the thrust balance system by maximizing comer seal

"restrictiveness"duringtightgap operation (seeFigureI-I),and minimizingcomer seal"restrictiveness"

during open gap operation. Another goal is to minimize thrust balance system flow since it is leakage
from pump discharge and detrimental to pump efficiency and suction performance. A final goal of any
comer seal design is to have its operation characterized so the thrust balance system can be confidently

analyzed during all phases of operation. (see Fig. I-2 for summary)

H. Comer seals in the NLS/STME liquid oxygen turbopump

Balancing design, off-design, and transient loads during STME LOX turbopump operation

requires a double comer seal at the outer and inner diameters of the shrouded pump impeller. The large
size of the impeller necessitates large radial clearances on the OD comer seal, resulting in large amounts
of flow leaking from the mainstream pump flow and a complex system in the impeller and housing to

route the flow back to impeller inlet (see Fig. H-l). This type of "thrust balance system" with large
leakage flow affects pump performance, housing structural reliability, cost, and manufacturing ease of
the turbopump. Enhancements to the "thrust balance system" operation could be made if the comer seal
were used to dramatically reduce the leakage flow while maintaining "thrust balance system" capability.
When this project was conceived there was not a large volume of empirical information about the
operadon and behavior of comer seals. Also at this time, no calibrated attalytical model existed for



"thrustbalancesystem" comer seals. Therefore, a test program was proposed for the STME LOX
turbopump comer seals that would develop an understanding of their operation and provide data to
calibrate the analytical comer seal model.

HI. Comer seal rig test program proposal

A new type of comer seal design incorporating grooves was investigated in early 1991 using
extrapolated CFD predictions of an enhanced labyrinth seal from a Texas A&M study. In that study, the

geometry and flow field employed to model the labyrinth seal, closely matches those of a comer seal.
Since the enhanced labyrinth seal showed substantial enhancement of performance, it was decided to

apply these results to the STME LOX pump comer seals with the hope of increasing thrust balance
system capability and reducing overall leakage.

To evaluate the improvements an enhanced comer seal (see Fig. 1II-1) might deliver to the thrust
balance system, the uncalibrated comer seal leakage model of the STME LOX pump flow balance model

was modified by increasing the nrestrictiveness" of the standard comer seal by 70%. This level was
derived from the CFD predictions for the enhanced labyrinth seal. The updated model showed an
increase in positive (toward the turbine) loading due to reduced pressure along the impeller's back-face
and lower flowrate. To return to the design thrust load, the ID comer seal (ref. Fig. rl-1) clearance was
reduced, thereby increasing the pressure along the impeller's back-face with even lower leakage flow.
See Figures III-2 & -3 for leakage predictions and resulting increase in thrust balance capability.

The enhanced comer seal study showed the following advantages for the STME LOX turbopump
design: 1.) increased thrust piston capability, 2.) decreased thrust balance system flow, 3.) increased

pump efficiency (lower H.P. requirement), 4.) improved suction performance, 5) decreased complexity
and cost of housing design, by eliminating recirculation tubes, as well as 6.) increased structural integrity
of the impeller resulting from reduced number of recirculation holes through base.

These promising results for the turbopump design were ample encouragement to examine what
would be required to create and calibrate an analytical tool for comer seal predictions which could then
be used in the 1D flow network of secondary flows as well as the main pump design flow balance model.

The original proposed test matrix to develop an analytical tool was:

Grooved comer seal design (similar to enhanced labyrinth seal):
3 groove design (different - L/D)
3 axial positions - centered, +0.015", -0.015"
3 flowrates
2 clearance levels

54 total tests 6 configurations

Ungrooved comer seal design (similar to standard seal):
1 ungrooved design
3 axial positions - centered, +0.015", -0.015"
3 flowrates

2 clearance levels

18 total tests 2 configurations

The most cost effective method of achieving the proposed Test Matrix was a simplified non-
rotating water flow rig tested at Pratt & Whituey's Aerothermal Design Lab. Section IV describes the
resulting water flow rig, its features, and the Design Lab's capabilities.

IV,. Comer seal rig and facility features

To begin water flow testing a rig had to be designed to hold the grooved and ungrooved test
samples. It would need to have flow visualization capabilities as well as easy access to the test samples.
Part of the proposed test matrix was to vary the "rotor's" axial position, requiring it to be moved relative
to the static piece. The feasibility of incorporating the tangential velocity component, found in the actual

2



comer seal, was investigated. Unfortunately, the angle at which the test sample would have to be set in
order to simdate the tangential velocity of flow in the seal required a test section that exceeded the water
table's dimensions (ref. Fig IV.,4). The compromise was thus made to examine the through flow
component only. This was believed to be a valid approximation since the flow must travel axially
through the seal regardless of velocity vector. The through flow component was also consistent with the
current analytical modelling technique. The shape and operation of the comer seal is believed to be a
function of total through flow and therefore the overall seal "restrictiveness" should not be strongly
affected by velocity vector. This effect remains to be quantified through seal characterization in the

pump water flow rig.
The resulting comer seal rig is a 8" X 8" X 30" channel (see Figure IV-2). This allowed a large

enough test sample to be installed such that pressures measured at the center of the sample would not be
subject to end-wall effects. The size of the channel resulted in slow, uniform flow supplied to the test
sample. The inlet chamber is approximately 6.5 " long. Included in this chamber is an inlet pipe
diffuser to eliminate the inlet flow impinging on the back wall. The flow from this chamber then passes
through a flow straightener and a screen onto the supply channel. The static pressure drop associated
with this configuration, measured from the inlet, to a location upstream of the test sample, was 0.2 - 0.4

psia.
Figure IV-1 displays some of the features of the test rig. Instrumentation for the test sample and

rig are shown in Figure IV-3. Figure IV-5 shows a calibration curve for the flow meter on the test stand
which gives an idea of the capability of the facility.

V. Taguchi optimization test program for an improved comer seal design

After examining the number of design parameters involved with comer seal geometry, the goal
of the comer seal program shifted from evaluating a few cases with features believed to improve sealing

performance (described in Section I/I), to that of optimizing the existing comer seal design. The large
number of dimensions necessitated using Taguchi optimization techniques to produce an optimized
design. The pressure drop and flow data from the Taguchi Test matrix would be used to calibrate an
analytical comer seal model. Additionally, it would provide insight into the general operation of comer

seals in an incompressible medium.
The large number of dimensions needed to define a comer seal required two sets of Taguchi test

matrices. The first matrix would examine all dimensions in an effort to reduce the number of parameters

that would be examined for optimization. The resulting test matrix was an L12 Taguchi test matrix, with
11 parameters of investigation in 12 tests as shown in Figure V-1. Note dimension F and V were t'LXed
with each other. The axial position CK&L) was held constant for all tests, as well as the radial position
fl&J). There was some variation in radial position from test to test due to Plexiglass tolerances on the

scaled test samples (3.75 times turbopump dimensions).

VI. Taguchi scope reduction test results

The ranked response of the scope reduction test matrix is shown in Figure V-2. The response
variable in the test matrix was delta pressure. It was measured by static wall taps upstream and
downstream of each test sample. Data was taken at several flow rates, although the response ranking was
examined only at 50 Gal/min. This represented the highest possible flow that existed on all test samples

except for trial or test number 5. It is believed that this sample was inadvertently tested at a much
smaller radial clearance, therefore the maximum attainable flowrate was only 28 gal/min. For this one
case the flow data for response ranking was extrapolated from 28 to 50 gal. / rain. The results of Figure
V-2 show that parameters G and U have the largest influence on pressure drop across a comer seal.

Delta pressure was used as the response variable because it represented a direct measure of a
comer seal's restrictiveness due only to seal geometry changes for a given flow and area. Figure I-1
describes how in order to obtain the greatest thrust balance capability, the largest delta pressure poss_le
is desired across a tight gap comer seal.

The resulting test sample geometries and ranking by delta pressure are shown in Figures V-3 &
4. The overall seal K-loss is also shown for each sample. An independent statistical analysis of the



scopereduction test results was performed by Pratt & Wbimey's statistical analysis group confirming the
rank of the scope reduction test results. The four primary influence parameters are B, G, U, V, listed in
order of importance.

Results from the scope reduction tests were evaluated by two methods. The standard method of
analyzing Taguchi tests, shown in Figure V-2, is to rank the parameters (comer seal dimensions, ie. B, C,

etc.) in order of influence. The magnitude of influence is found by calculating, for each parameter, the
average of its first level's response (delta P) and subtracting the average of its second level's response.
The dimensions corresponding to the fast (I) and second level (0) are shown above each parameter. The

parameters with the largest difference between fast and second level average response are those with the
highest influence. The ranking of parameters highest to lowest is shown on the bottom line of Figure V-
2. From this analysis method, we chose parameters G and U in order to optimize the comer seal design.

The second method used to evaluate the scope reduction results was to rank the test cases in

order of response, as shown in Figures 3 & 4. Inspecting the test sample cross-sections it was found that
samples with tall step heights (dimensions F & V) and narrow land widths (B & E), with K = L = 0 bad
the highest response (delta P). Therefore, B and E were fixed to the same dimension and would be used
in the corner seal design optimization. The same was done for F & V.

VII. Taguchi Optimization test matrix

The results of the scope reduction Taguchi test matrix found four parameters B, G, U, and V as

the primary dimensions that influenced the overall comer seal loss factor. The Tagucbi optimization test
matrix for these parameters and their interactions was created using the best tested level of each
parameter (B,G,U,V) from the scope reduction tests, plus and minus 25% of that level. The resulting test
matrix is shown in Figure VII-1.

Axial positions K & L would be varied together for each optimization test at the line-on-line and

maximum open positions allowed by the turbopump bearings. This variation would quantify the K-loss
of each configuration at the comer seal axial positions which determine the thrust balance system's
capability. Refer to Figure I-2 for a reminder of the goals of comer seal design. Figure VII-2 shows a
dimensioned cross section of the eight samples in the Taguchi optimization test matrix for the line-on-
fine axial position.

VIII. Taguchi Optimization matrix results

The overall goal for the optimization of a comer seal's design is to maximize the seal's

restrictiveness in the tight gap or overlapped axial position and minimize its restrictiveness in the open
axial position. For this reason the response variable used to evaluate the optimization test results was K-
loss. Figure VI_-I shows the ranked response of the Tagucbi optimization matrix at the line-on-line
position at 55 Gal/min. The top four are the GV interaction, dimension V, or step height, the GB
interaction, and U, the inlet step dimension. In the axially open position ranking was predominantly
based on exit geometry, where the top four parameters of influence are B seal pitch, GB interaction once

again, GV interaction again, and G the exit expansion height. Dimension G has a weak influence
compared to the fast three. The ranking by pressure drop is shown for comparison at fine-on-fine, Figure
VIII-3, and open axial position, Figure VIII-4. The ranking is slightly different than by K-loss, with G,
U, GV, and V as the most influential factors for the line-on line case. The most influential factors for the

axially open case were V, G, U, and GU.

Reviewing the previous paragraph one can visualize what factors are influencing the
restrictiveness of a comer seal by observing the number of times a parameter is mentioned. The
factors=time mentioned are, G=-3, V=3, GV=3, U=3, GB=2, B=I, GU=I and are listed in order of

ranking.

Figure VIII-5 continues the data reduction of the optimization matrix by displaying the
difference in K-loss for all samples at their respective axially open tested positions. The largest delta K

regardless of tested axial position is the most desirable sample. Note that Sample 1 is a 2X scale of

4



Sample 8's dimensions (reference Fig. VII-2). Figure VIII-5 shows that Sample 4 has the largest delta K,

even thought it was tested with the smallest axial gap.
Figure VIII-6 demonstrates the slope and trend of the different samples when tested at the

axially open and line-on-line positions. Although Sample 4 has the highest slope, it does not have the
highest K-loss level. Since Samples 8 and 1 are scaled to each other, and have similar K-loss and slope
of K-loss, Sample 1 was chosen as the champion of the Taguchi optimization matrix.

IX. Optimized comer seal design and its characterization

The scope reduction test results, the optimization test results, the ranking of parameters of
influence, as well as Figures vm-5 & 6 were all used to determine the dimension of each parameter that

would create the optimized comer seal geometry. The ranking of parameters f_-om Section VIII
recommended G at its highest level, V at its highest level, and f'mally U at its lowest level. Referring to
Figure VII-2, sample 4 with a small value for U, yielded the largest delta K from line-on-line to axially
open. Parameter B is recommended at its highest level because of the large response of sample 1. Figure
IX-1 shows a cross section of the optimized comer seal geometry. The optimized sample is the same as
sample 1 with the exception of the entrance height U set at the minimum level of 0.281" instead of
sample l's dimension of 0.469".

While sample 1 was being modified into the optimized geometry of Figure IX-l, news of the
NLS program suspension was received. For this reason only limited characterization of the optimized
sample could be completed. Figure IX-2 shows 5 lest points of the optimized sample from open 0.028"
(turbopump scale) to 0.029" overlapped, at the same clearance level used in the optimization matrix
(0.II" in rig). The optimized sample has slightly higher (3-4%) K-losses at fine-on-line and axially open
than did sample I of the optimization matrix. For comparison, Figure IX-2 has the original pre-test

analytical estimate of K-loss through the baseline comer seal (sample I scope reduction matrix, Figure
VI-2), along with the optimized sample characterization.

X. Conclusions, Recommendations and comments

We regret being unable to fully characterize the optimized sample as originally planned. We
had envisioned testing this sample at two additional radial clearances for a total of three, all at the same
axial positions as shown in Figure IX-2. In addition, it bad been planned to test the optimized sample in
a tilted position to simulate impeller deflections that might occm" in the tm'bopump's impeller. Impeller
deflections could result in the comer seal having different flow areas through the f'rrst and second

constrictions. This test would have been performed by applying a taper on the step from the first to the
second constriction. Tilting the whole sample would produce results identical to a test at a more open
axial position.

The main results of this program was the identification of the key design parameters that
influence a comer seal' s restrictiveness. Although the final goal of fully characterizing an optimized
comer seal geometry was not achieved, a great deal of information was learned through the Taguchi
scope reduction and optimization test program. From this information a comprehensive analytical model
was developed for use in future design and analysis of comer and variable restriction seals.
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Figure II1-1 Proposed Grooved Corner Seal Design
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Appendix A Calculations

water density ( 9 ) = 62.15 lbm/ft3

mass flow (m) = Gal/min * 0.13368 ft3/gal * 1 min/60 sec * 62.15 lbm/ft3

(Ibm/see)

Area (A) = 8" * clearance gap * 144 (feet 2) line-on-fine & overlap cases

Area (A) -- 8" * SQRT(clearance gap 2 + axial open 2) * 144 (feet 2)

axially open case

gravitational constant (gc) = 32.175 lbm-ft / lbf-sec 2

Ksy s = (ZkPup_down * 144. * 2. * gc * 9 * A2) / m (dimensionless)
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